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We demonstrate multiwavelength channel optical logic operations on the Bloch vector of a quantum two-level
system in the structured electromagnetic vacuum of a bimodal photonic crystal waveguide. This arises through a
bichromatic strong-coupling effect that enables unprecedented control over single quantum-dot (QD) excitation
through two beams of ultrashort femtojoule pulses. The second driving pulse (signal) with slightly different
frequency and weaker strength than the first (holding) pulse leads to controllable strong modulation of the QD
Bloch vector evolution path. This occurs through resonant coupling of the signal pulse with the Mollow sideband
transitions created by the holding pulse. The movement of the Mollow sidebands during the passage of the
holding pulse leads to an effective chirping in transition frequency seen by the signal. Bloch vector dynamics
in the rotating frame of the signal pulse and within the dressed-state basis created by the holding pulse reveals
that this chirped coupling between the signal pulse and the Mollow sidebands leads to either augmentation or
negation of the final quantum-dot population (after pulse passage) compared to the outcome of the holding pulse
alone and depending on the relative frequencies of the pulses. By making use of this extra degree of freedom for
ultrafast control of QD excitations, applications in ultrafast all-optical logic AND, OR, and NOT gates are proposed
in the presence of significant (0.1) THz nonradiative dephasing and (about 1%) inhomogeneous broadening.
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I. INTRODUCTION

Photonic band-gap (PBG) materials are a special class
of photonic crystals (PC’s) that facilitate light localization
[1,2] and control of spontaneous emission [3,4] from atoms.
They offer unprecedented engineering capabilities to design
electromagnetic (EM) dispersion relations, thereby changing
the vacuum EM density of states (DOS) over extended spectral
ranges. The EM DOS structure in photonic crystals provides an
ideal environment for exploring quantum optical phenomena
[4–11] with important consequences for microphotonic device
development. The performance of PC-based devices can be
significantly better than their conventional counterparts due to
the strong confinement of light within an optical microchip.
The small PC defect mode volume leads to extremely strong
optical fields at very low power levels for exceptional nonlinear
optical effects. Moreover, PBG waveguides enable subwave-
length scale circuits for diffractionless guidance of light on a
chip in three dimensions [12–16]. As a result, PBG materials
represent a broad and robust platform for integrated photonics.

Many new quantum optical phenomena are predicted to
occur within the unusual vacuum DOS structure of photonic
crystals. The strong suppression of DOS for frequencies
within the PBG leads to increased spontaneous emission
lifetime [4], photon-atom bound states [5], and localization
of superradiance [6]. Whereas the PBG is often regarded
as a spectral range with vanishing electromagnetic DOS,
engineered defects in the otherwise periodic microstructure
can create greatly enhanced local density of states (LDOS)
and field enhancement in small mode volumes [17–19]. This
enhanced coherent coupling to light emitters can be combined
with suppressed background incoherent coupling deep inside
the PBG. Experimental realization of single quantum-dot (QD)
strong coupling inside a PC cavity [18] and other types of
cavities [20–24] have been reported. This has sparked broad
interest in on-chip quantum electrodynamics.

The electromagnetic vacuum influences light-matter inter-
actions through radiative relaxation of the atomic dipole and
population. This relaxation has traditionally been considered
incompatible with strong-coupling effects. Therefore, most
strong-coupling studies have focused on minimizing dissipa-
tion to EM continuum modes. However, it has been recently
shown that discontinuous LDOS inside photonic crystals can
bring novel dynamics into strong-coupling phenomena, espe-
cially when the length-of-interaction time scale �t (e.g., pulse
duration, observation time, etc.) is comparable to or much
longer than the relaxation time scale 1/�. For example, in the
steady-state time regime where �t � 1/�, a discontinuous
jump from low to high LDOS at cutoff in a bimodal waveguide
enables switching of the two-level quantum-dot population
from below to above inversion at a continuous wave (cw)
driving laser field threshold [7–9]. This is due to the imbalance
of radiative emission rates among the laser-induced Mollow
sidebands that straddle the LDOS discontinuity.

The steady-state population switching turns into a more
dramatic dynamic population switching [10,11] for a coher-
ent optical pulse with duration comparable with radiative
relaxation rates (�t ∼ 1/�). Near the LDOS discontinuity,
radiative relaxation rates of the driven QD become highly field
dependent. This is accompanied by a “vacuum structure term”
in the atomic Bloch equations. Suppose the QD transition
(in the absence of an external field) lies in the low LDOS
region with a single waveguide mode. Under strong driving
field, the QD will experience enhanced coupling to the slow
group velocity states of the second mode of the waveguide
that exhibits a cutoff. One of the QD Mollow sidebands then
experiences a high LDOS with accelerated radiative relaxation.
Under weak field, the QD will be decoupled from the high
LDOS, with decreased radiative relaxation. This makes it
possible to control radiative relaxation time scale through field
strength and dynamically change the interaction regime (from
coherent transient to field-enhanced decay, and vice versa)
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within a single-pulse duration. In this mixed interaction time
scenario, a single control laser pulse is capable of high-contrast
dynamical switching of QD populations on a picosecond time
scale with femtojoule energy levels. Population inversion is
activated and deactivated by picosecond pulse trains detuned
below and above the atomic resonance, respectively. This
dynamic inversion is due to the rapid rise in relaxation rates as
the pulse amplitude rises, causing the Bloch vector to switch
from antiparallel to parallel alignment with the pulse torque
vector into a slightly inverted state (steady-state attraction
process). Subsequent near-complete inversion occurs through
a coherent adiabatic following process as the pulse amplitude
subsides. The system reverts to slow relaxation and the QD
remains inverted long after the pulse has departed. This
single-pulse dynamic switching is a strong-coupling effect that
results from the interplay between coherent transient dynamics
and field-dependent radiative relaxation inside discontinuous
LDOS vacuum structures (structured vacua).

In this paper, we develop a general framework which
encompasses both the steady-state switching [7–9] and single-
pulse dynamic switching effects [10,11], and allows us to
introduce an additional driving pulse (signal pulse) to modulate
the evolution of a QD, already dressed by a strong holding
laser pulse in a PBG waveguide. The weaker modulating
signal pulse is treated as a perturbation to the dressed levels
of the QD created by the holding pulse. Nevertheless, the
signal pulse introduces rich modulation effects in the final
QD inversion when its frequency coincides with one of the
QD Mollow sidebands induced by the holding pulse. The
secondary signal pulse is designed to probe the moving
Mollow sidebands caused by transitions among dressed levels
of the QD, which depends on the holding-pulse amplitude. As
the holding-pulse amplitude varies, the detuning between the
Mollow sidebands and the signal-pulse frequency is effectively
chirped. As a result of this chirping, after the Bloch vector is
attracted to the steady state at the peak of the two pulses
(same as in the single-pulse dynamic switching effect), it then
adiabatically follows the chirped movement of the signal-pulse
torque vector, bringing the QD to the opposite inversion
state as compared to the nonchirped single-pulse dynamic
switching. More specifically, while a single negatively detuned
holding pulse (redshifted) inverts the quantum dot after
passage, the simultaneous presence of a properly detuned
signal pulse modulates the population to below inversion
after passage. On the other hand, while a single positively
detuned holding pulse (blueshifted) de-excites the quantum
dot, simultaneously sending in a properly detuned signal pulse
leads to final population inversion. The bichromatically driven
QD system offers a new degree of freedom to logically control
QD excitation states, not available in single-pulse dynamic
switching.

The required electromagnetic vacuum structure with dis-
continuous LDOS can be realized through engineered defects
inside otherwise periodic photonic crystals. For example,
waveguide architectures within a three-dimensional (3D) PBG
provide very large LDOS jumps via mode cutoff. In the high
LDOS region, Purcell factors (ratio of spontaneous emission
rate to that in free space) of several thousand are possible
in waveguide segments less than 20 unit cells [25,26]. This
accelerates spontaneous emission to occur in a picosecond,

superceding phonon-mediated (nonradiative) relaxation even
at moderate temperatures. This ultrafast radiative relaxation
enables single-pulse dynamic switching in picosecond all-
optical switches [10,11]. With the extra flexibility in QD con-
trol provided by the secondary signal pulse, we demonstrate
the full range of ultrafast all-optical AND, OR, and NOT logic
operations.

In Sec. II, we establish the theoretical framework for
describing the evolution of a QD Bloch vector driven by
two external pulses within the discontinuous LDOS vacuum
structure. In Sec. III, we give a detailed exposition of the
bichromatic QD inversion modulation effect through the effec-
tive chirping between signal-pulse and holding-pulse dressed
transitions. In Sec. IV, we discuss possible applications to
ultrafast all-optical AND, OR, and NOT gates, including inho-
mogeneous QD line broadening and nonradiative dephasing. In
Sec. V, we compare our bichromatic control mechanism with
other widely applied coherent adiabatic inversion techniques.
We also present our conclusions and discuss future directions.

II. EQUATION OF MOTION FOR THE DRIVEN
QUANTUM DOT

We consider a two-level system (e.g., quantum dot) with
transition frequency ωA detuned slightly from a step disconti-
nuity in the electromagnetic density of states at frequency ωE .
A strong holding laser pulse Eh(t) and a weaker signal pulse
Es(t) [with central frequencies ωh,s and envelope functions
Eh,s(t)] interact simultaneously with this QD. The step-shaped
electromagnetic DOS can be provided by a waveguide cutoff
mode within a 3D-2D PBG heterostructure as discussed in
previous work [10,11]. In addition, the two-level system
interacts with a smooth featureless nonradiative reservoir that
is statistically independent from the photonic reservoir. This
coupling to phonons causes dephasing of the atomic dipole.
The contributions of the two reservoirs to the evolution of the
reduced density operator of the two-level system are assumed
to factorize so as to be treated separately.

We consider classical control and signal pulses with electric
field

Eh,s(t) = Eh,s(t) cos(ωh,s t + φh,s). (1)

The Hamiltonian, in the absence of phonon coupling,
consists of three parts:

H = HS + HR + HSR, (2)

where HS is the Hamiltonian of the pulse-driven atom, HR

describes the electromagnetic reservoir, and HSR is the atom-
reservoir coupling. In the bare atomic basis (ground state |1〉
and excited state |2〉), this Hamiltonian [in the rotating-wave
approximation (RWA) in rotating frame ωh] takes the form

HS = 1

2
h̄�Ahσ3 − h̄[εh + εse

−i(δs t+φs )]σ21

− h̄[εh + εse
i(δs t+φs )]σ12,

(3)
HR =

∑
λ

h̄ωλa
†
λaλ,

HSR = ih̄
∑

λ

gλ(a†
λσ12 − aλσ21).
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Here, the time-dependent Rabi frequency εh,s(t) =
d21|Eh,s(t)|/h̄, and d21 is the quantum-dot dipole transition
matrix element. We assume |d12| = |d21| = d21, Eh,s(t) =
Eh,s(t)∗, and that the dipole is parallel to the pulse polarization
for simplicity. a

†
λ and aλ are the creation and annihilation

operators of mode λ of the electromagnetic reservoir with
frequency ωλ. We define the bare atomic operators σij =
|i〉〈j |(i,j = 1,2), population inversion σ3 = σ22 − σ11, the
detunings �Ah = ωA − ωh, �λ = ωλ − ωh, δs = ωs − ωh,
and we choose φh = 0.

A. Dressed states

The coupling of the two-level quantum dot to the two
driving pulses results in a set of energy eigenstates, the doubly
dressed states, composed of an infinite number of manifolds,
each containing an infinite number of energy levels. The
fluorescence spectrum as a result of spontaneous emissions
among selected levels of the doubly dressed states depends on
the relative strength and detuning of the two driving beams
and exhibits distinct features from the Mollow triplet of single
dressed states. As shown in Fig. 1 (from [27]), when εs is
much smaller than εh, the fluorescence peaks are confined in
three regions ωh and ωh ± 2
h (each composed of triplets
or doublets depending on signal-holding beam detuning) that
can be viewed as evolved from the single-beam Mollow
triplet. However, as εs increases, not only do the splittings

FIG. 1. (From [27]) Fluorescence spectrum of two-level atom in
ordinary vacuum (with radiative decay rate �) driven by a bichromatic
field with one strong (holding) and one weak (signal) component.
(I) Fluorescence spectrum for ωh = ωA, 2εh = 50�, εs/εh = 0.2, and
different detunings �+s = (ωh + 2
h) − ωs between the signal beam
and the right Mollow sideband of the holding beam (
h being the
generalized Rabi frequency of the holding beam): [I(a)] �+s � 50�;
[I(b)] �+s = 7�; [I(c)] �+s = 0. (II) Fluorescence spectrum for
ωh = ωA, 2εh = 50�, �+s = 0, and different Rabi frequency ratio:
[II(a)] εs/εh = 0.2; [II(b)] εs/εh = 0.4; [II(c)] εs/εh = 0.6.

within each doublet or triplet increase, but there are also
additional high-order multiple peaks emerging at ωs ± 4
h,
ωs ± 6
h, etc.

As the fluorescence spectrum becomes more complex and
its overall range widens with increasing signal field, a general
derivation of the master equation for bichromatically driven
quantum dots in the structured vacuum is difficult. To simplify
the model, we assume that the signal field is much weaker than
the holding field εs � εh, so that the fluorescence spectrum is
confined in the three regions ωh and ωh ± 2
h of the central,
left, and right Mollow sidebands of the holding pulse. In this
situation, instead of working in the complex doubly driven
dressed-state basis, we work in the dressed-state basis of
the holding pulse and treat the signal field as a perturbative
time-dependent modulation on this singly driven dressed state.
This assumption leads to the following time-dependent dressed
states |1̃〉 and |2̃〉 that diagnolizes HS :

|1̃〉 = c(t)|1〉 + s(t)|2〉,
(4)

|2̃〉 = −s(t)|1〉 + c(t)|2〉,
where

c2(t) = {1 + �AL/[2
(t)]}/2,

s2(t) = {1 − �AL/[2
(t)]}/2, (5)


(t) = [(�AL/2)2 + |εh + εse
−i(δs t+φs )|2]1/2.

The dressed-state atomic operators are defined similarly as
their bare-state counterparts:

R̃ij = |ĩ〉〈j̃ |(i,j = 1,2),

R̃3 = R̃22 − R̃11.

B. Master equation

By working in the dressed-state basis, Eq. (4), the master
equation that governs the temporal evolution of the reduced
quantum-dot density operator can be derived. The details are
shown in Appendices A and B. This master equation, when
represented in the bare atomic basis |1〉 and |2〉, has the
following form:

�̇ = −i
R3� − γ0c
2s2 + γp(c2 − s2)2

2
(� − R3�R3)

− γ+c4 + 4γpc2s2

2
(R22� − R12�R21)

− γ−s4 + 4γpc2s2

2
(R11� − R21�R12)

− cs

2
[s2γ0(R12� − R3�R12) + c2γ+(R12� + R12�R3)

+ s2γ−(�R12 − R3�R12) + c2γ0(�R12 + R12�R3)]

− c2s2

2
(γ− + γ+)R21�R21 + H.c. (6)

Here, γ0,± are the radiative decay rates at the central, right,
and left Mollow sidebands dressed by the holding pulse alone
(details in Appendices A and B). γp is the phonon dephasing
rate.

This master equation is derived in the signal-
pulse-modulated dressed-state basis of the holding-pulse
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equation (4), and is valid when signal pulse is small compared
with holding pulse so that the spectrum of the dressed system
is confined in the neighborhood of the holding-pulse Mollow
triplet [Fig. 1, II(a)]. If the signal pulse is strong enough to
induce higher-order harmonics [Fig. 1, II(c)], these higher-
order resonances (across a wide spectrum) will need to enter
the master equation, each of them sensing a distinct DOS
in the structured vacuum of the photonic crystal waveguide. In
this situation, Eq. (6) will no longer be sufficient to describe
the dressed system dynamics in the structured vacuum.

C. Optical Bloch equation

Using the master equation (6), the temporal evolution of
the quantum-dot reduced density operator is known. The
Bloch equation that governs the evolution of the quantum-dot
population and polarization is then obtained by taking the
expectation values of the atomic operators with respect to the
reduced density operator.

We define the in-phase and in-quadrature parts of the atomic
dipole operators as

σ1 = σ12 + σ21,
(7)

σ2 = i(σ12 − σ21).

By using Eq. (6) and setting γ0 = γ+ for our LDOS model,
the following Bloch component equations are obtained (same
derivation as the Bloch equation for a QD driven by a single
pulse [11]):

〈σ̇1〉 = −�AL〈σ2〉 − 2εs sin φ〈σ3〉 − 1

Tu

〈σ1〉 + V,

〈σ̇2〉 = �AL〈σ1〉 + 2(εh + εs cos φ)〈σ3〉 − 1

Tv

〈σ2〉,
(8)

〈σ̇3〉 = −2(εh + εs cos φ)〈σ2〉 + 2εs sin φ〈σ1〉
− 1

Tw

(〈σ3〉 + 1) + V 〈σ1〉.

Here, φ(t) = δst + φs , 1/Tu,v = �u,v = c2(1+s2)γ++s4γ−+4γp

2 ∓
c2s2(γ+−γ−)

2 , 1/Tw = �w = c2(1 + s2)γ+ + s4γ− and V =
(γ+ − γ−)cs3. Tu and Tv reduce to the transverse dephasing
time, and Tw reduces to the longitudinal dephasing time in
ordinary vacuum if we set γ+ = γ−. The Bloch component
equations can be written in vector form

ρ̇ = 
 × ρ − �ρ + C, (9)

where

ρ = (〈σ1〉,〈σ2〉,〈σ3〉) = (u,v,w),


= 
h + 
s = (−2ε,0,�AL) + (−2εs cos φ, − 2εs sin φ,0),

�ρ = (u/Tu,v/Tv,w/Tw),

C = (V,0, − 1/Tw + V u).

The incoherent terms in Eq. (9) are similar to that of a
QD driven by the holding pulse alone [10,11], except that
the dressed-state coefficients c and s now contain oscillating
components coming from the detuning frequency δs of the
signal pulse from the holding pulse. As with the master
equation (6), the Bloch equation (9) is valid when the

signal pulse is weak compared with the holding pulse so
that it can be considered as a perturbative modulation to
the singly dressed Q-dot states due to the holding pulse
alone, and the fluorescence spectrum of the quantum dot is
confined in the three regions around the Mollow triplet of the
holding pulse (Fig. 1). As with the singly driven quantum
dot [10,11], the “vacuum structure term” V and strongly
field-dependent relaxation rates 1/Tu,v,w significantly alter the
temporal evolution of the atomic Bloch vector as the quantum
dot interacts with the optical pulses. Both of these features
are absent in a conventional (unstructured) electromagnetic
vacuum. More specifically, the relaxation rates are enhanced
under strong field and suppressed in weak field. As a result,
the Bloch vector experiences fast relaxation toward the steady
state near the peak of the pulse (steady-state attraction process
[10,11]), but reverts to coherent evolution as the pulse subsides.

A significant difference between the doubly driven system
and a singly driven system arises from the coherent driving
terms (Fig. 2). In addition to the holding-pulse torque vector �h

that moves in the u-w plane at a rate of order τ−1 (τ being
the pulse duration), the torque vector �s of the signal pulse
oscillates in the u-v plane at the beating frequency δs between
the two pulses. This signal torque vector provides an additional
control degree of freedom of the quantum dot. We denote the
angle between �h and the w axis as α, the angle between �s

and the negative u axis direction as φ, and the angle between
the total torque vector � = �h + �s and the w axis as θ .
The precession of the Bloch vector around � determines the
coherent evolution of the Q dot. As we show later, the steady-
state attraction near the peak of the pulse, combined with the
bichromatic coherent evolution as the pulses subside, enables
ultrafast all-optical logic operations in the PBG microchip.

u

v

w

h

s
θ

α
φ

FIG. 2. (Color online) Torque vectors of the holding and signal
pulses. The holding-pulse torque vector �h moves in the u-w plane at
a rate of order τ−1 (τ being the pulse duration), while the signal-pulse
torque vector �s oscillates in the u-v plane at the beating frequency
δs between the two pulses. We denote the angle between �h and the
w axis as α, the angle between �s and the negative u axis direction
as φ, and the angle between the total torque vector � = �h + �s

and the w axis as θ . The precession of the Bloch vector around �

determines the coherent evolution of the Q dot.
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III. BICHROMATIC QUANTUM-DOT INVERSION
MODULATION

For a single continuous wave holding beam, the steady
state of Eq. (9) can be solved analytically to reveal the
single-beam steady-state switching effect [7–9]. If both the
holding and signal beams are continuous, the steady state of
the Bloch equation can be solved semianalytically through
Floquet expansion at the beating frequency δs [28]. Similar
steady-state switching effects can be obtained in this multiple
cw beam system, with the susceptibility spectrum composed
of multiple peaks near each of the Mollow sidebands instead
of a single Mollow peak.

When the driving beams are short pulses, the steady-state
solution is insufficient to describe the Bloch vector evolution.
Numerical solution of Eq. (9) reveals a strong-coupling effect
in this structured vacuum involving fast attraction to the steady
state at the pulse peak followed by various coherent evolution
processes near the pulse tail when radiative relaxation is
slower. As shown previously, when a single strong pulse
interacts with the quantum dot (εs = 0), dynamic population
inversion switching is obtained by a combination of the steady-
state attraction and coherent adiabatic following [10,11]. A
single redshifted holding pulse (�Ah > 0) inverts the quantum
dot after passage [Fig. 3(a), dashed line], while a single
blueshifted pulse (�Ah < 0) de-excites the quantum dot after
passage [Fig. 3(b), dashed line]. This dynamic population
switching mechanism has been suggested for ultrafast all-
optical switching at very low power levels [10,11].

Further control of the quantum-dot population is possible by
sending an additional signal pulse εs to interact simultaneously
with the quantum dot. As shown in Fig. 3(a), while a
single negatively detuned holding pulse (�Ah > 0) inverts
the quantum dot after passage (dashed curve), the coincident
traversal of a properly detuned signal pulse negates the
population inversion after passage. On the other hand, as
shown in Fig. 3(b), while a single positively detuned holding
pulse (�Ah < 0) de-excites the quantum dot from an arbitrary
initial state to ground state (dashed curve), a properly detuned
and simultaneous signal pulse εs is able to reinvert the final
population (solid curve).

The amplitude of population modulation by a secondary
signal pulse depends sensitively on various factors. Figure 4
shows the final population reached after the passage of the
pulses as a function of detuning δs . Again, when only the
holding pulse is present (εs = 0, thick dotted-dashed lines),
the quantum dot reaches positive inversion when �Ah > 0
[Fig. 4(a)] and negative inversion when �Ah < 0 [Fig. 4(b)].
The simultaneous presence of the signal pulse induces complex
modulations of the final inversion that depend strongly on δs

(solid and dashed curves). If we denote |�min
h | = |�Ah| and

|�max
h | =√

�2
Ah + (2εmax

h )2 as the minimum and maximum Mollow
splitting generated by the holding pulse alone during its pas-
sage (εmax

h being the peak Rabi frequency of the holding pulse),
then the largest inversion modulation appears when the signal
frequency ωs falls in the region (ωh + |�min

h |,ωh + |�max
h |) for

�Ah > 0 [Fig. 4(a)] and the region (ωh − |�max
h |,ωh − |�min

h |)
for �Ah < 0 [Fig. 4(b)]. Furthermore, the amplitude of
the inversion modulation also depends on the initial phase

(a)

5 10 15 20
t ps

1.0

0.5

0.5

w

(b)

5 10 15 20
t ps

1.0

0.5

0.5

w

FIG. 3. (Color online) Single-pulse dynamic population switch-
ing effects (dashed lines) when only the holding pulse εh is present
(εs = 0) with (a) �Ah > 0 (�Ah = 11 THz, �hE = ωh − ωE =
4 THz, εmax

h = 20 THz, εmax
s = εmax

h /3) and (b) �Ah < 0 (�Ah =
−11 THz, �hE = 15 THz, εmax

h = 6 THz, εmax
s = 1.25 THz). The

simultaneous introduction of an additional signal pulse εs to interact
with the quantum dot induces significant modulation of the final
inversion (solid lines) with (a) δs = 25 THz and (b) δs = −13 THz.
The pulse duration τ = 5 ps, γ = 2.5 THz, γlow = 5 GHz, and γp = 0.
For schematic visualizations of the various frequency scales in (a) and
(b), see Figs. 13(a) and 14, respectively.

difference �φ(t = 0) = φs between the signal and holding
pulses in certain detuning δs ranges. In Fig. 4, the solid curves
correspond to φs = 0 and the dashed curves correspond to
φs = π .

The phase sensitivity of the inversion modulation is only
significant when the detuning δs is small, and it results from
the interference between the two driving pulses. When δs

is small, the number of beatings due to interference within
the pulse duration is small, making the initial relative phase
important for the evolution of the Bloch vector. To see this
more clearly, consider the limit δs → 0 (two pulses with the
same frequency), where the doubly driven system reduces
to a singly driven dynamic switching system with the pulse
Rabi frequency being either ε = εh + εs (when φs = 0) or ε =
εh − εs (when φs = π ). This results in significant difference
in the final inversion reached between the two different initial
phases.

When δs increases, there is less phase sensitivity since
the increased number of interference cycles tends to average
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(a)

h
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h
max

h
min

h
max

hω
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1.0

0.5

0.5

1.0
Final Inversion

(b)

h
min

h
max

h
min

h
max

ωA hωE h

nn

20 0 20 40
δs THz

1.0

0.5

0.5

1.0
Final Inversion

FIG. 4. (Color online) Bichromatic modulation of the final
inversion w as function of δs . The pulse duration τ = 5 ps, γhigh =
2.5 THz, γlow = 5 GHz, and γp = 0. The (blue) solid curves
correspond to φs = 0 and (red) dashed curves correspond to φs = π .
(a) Red detuned �Ah = 11 THz, �hE = 4 THz, εmax

h = 20 THz, and
εmax
s = εmax

h /3. (b) Blue detuned �Ah = −11 THz, �hE = 15 THz,
εmax
h = 6 THz, and εmax

s = 1.25 THz.

out the influence of the initial phase on the quantum-dot
evolution. When δs � τ−1, the number of interference cycles
within the pulse duration is sufficiently large that the effect
of relative phase is completely averaged out over time and
only the phase-insensitive response remains. Moreover, this
phase-insensitive inversion modulation increases as the signal
pulse moves away in frequency from the holding pulse and
approaches the Mollow sideband regions generated by the
holding pulse. Since the signal pulse is weak compared with the
holding pulse, it is treated as a perturbation to the dressed-state
levels generated by the holding pulse. The strong inversion
modulation occurs when there is resonance between the signal
pulse and the dressed level transitions that produce the Mollow
sidebands. As we have already seen in Fig. 4, when δs falls
in the Mollow sideband regions (|�min

h |,|�max
h |) [for �Ah > 0,

Fig. 4(a)] and (−|�max
h |, − |�min

h |) [for �Ah < 0, Fig. 4(b)],
the inversion modulation actually becomes so large that, given
proper �Ah and εh,s , it is possible to reverse the sign of the
final population compared with that produced by the holding
pulse alone. We show in the following that population reversal
is the result of the rapid steady-state attraction (radiative
relaxation) near the peak of the two pulses followed by a
complex coherent interaction between the pulses and the
QD as the pulses subside. This coherent interaction can be

described as an adiabatic following process in the presence of
a chirped resonant interaction between the signal pulse and the
time-varying Mollow sidebands induced by the holding pulse.

A. Signal-pulse negation of dynamic inversion

We consider the large inversion modulation depicted in
Fig. 4(a), focusing on the region of the right Mollow side-
band trajectory (ωh + |�min

h |,ωh + |�max
h |). The simultaneous

arrival of a weak signal pulse negates the final population
inversion that would be created by a redshifted (�Ah > 0)
holding pulse. Here, the signal pulse is nearly resonant with
the right Mollow sideband generated by the holding pulse. To
describe this phenomenon, we denote the dressed QD states
generated by holding pulse alone as

|1〉α = cα|1〉 + sα|2〉,
(10)

|2〉α = −sα|1〉 + cα|2〉,
where

c2
α = (1 + �Ah/|�h|)/2,

(11)
s2
α = (1 − �Ah/|�h|)/2.

The corresponding expectation value of the dipolar and
population operators of these singly dressed states are defined
as follows:

uα = 〈(|1〉α〈2|α + |2〉α〈1|α)〉 = (
c2
α − s2

α

)
u + 2cαsαw,

vα = 〈i(|1〉α〈2|α − |2〉α〈1|α)〉 = v, (12)

wα = 〈(|2〉α〈2|α − |1〉α〈1|α)〉 = −2cαsαu + (
c2
α − s2

α

)
w.

Here, the amplitudes (u,v,w) represent the atomic Bloch
vector in the bare-state basis. We can easily identify (c2

α −
s2
α) = �Ah

|�h| = cos α and 2cαsα = 2εh

|�h| = sin α, with α being the
angle between the w axis and �h. This implies sα = sin(α/2)
and cα = cos(α/2). Equation (12) now becomes

uα = u cos α + w sin α,

wα = −u sin α + w cos α, (13)

vα = v,

which is equivalent to a rotational transformation of the
(u,v,w) coordinate about the v axis by angle α [Fig. 5(a)].
In the following, this singly dressed state coordinate is called
the α coordinate. Now, we further rotate the α coordinate by
angle φ = δst + φs about the wα axis so that the coordinate
system catches up the rotation of �s induced by the frequency
difference δs between the holding pulse and the signal pulse
[Fig. 5(b)]. This transformation brings the reference frame of
the Bloch vector to the rotating frame of the signal pulse at ωs ,
with the new φ coordinate defined as

uφ = uα cos φ + vα sin φ,

vφ = −uα sin φ + vα cos φ, (14)

wφ = wα.

We are especially interested in the final bare quantum-dot
population w after interacting with the holding and signal
pulses. Since α = sin−1(2εh/|�h|) → 0 as εh → 0 after the
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(a)

uα ucos wsinα

v vα

wα usin wcosα

h

s
α α φ

(b)
uα

vα

wφ wα

vφ uαsin vαcosφ

uφ uαcos vαsinφ
h

s φ

FIG. 5. (Color online) Bloch coordinate transformations for
�Ah > 0 case. The original (u,v,w) coordinate system in the bare
atomic basis is (a) first rotated by angle α about the v axis to parallel
alignment with �h (dressed-state basis of the holding pulse), and then
(b) rotated by angle φ about the wα axis to catch up with the rotation
of the signal-pulse torque vector �s .

passage of the pulses and wφ = wα → w, the final inversion
in the φ coordinate also represents the final inversion in the
bare atomic states.

Equations (13) and (14) are basis transformations with no
approximation introduced. The transformed Bloch equation in
the φ coordinate becomes

ρ̇φ = �φ × ρφ − �φ + Cφ, (15)

where

Cφ =
⎛
⎝ cos φ(V cos α − �w sin α)

− sin φ(V cos α − �w sin α)
−V sin α − �w cos α

⎞
⎠ ,

�φ =
⎛
⎝−2εs(sin2 φ + cos2 φ cos α)

0
|�h| − δ

⎞
⎠

+2εs cos φ

⎛
⎝ 0

− sin φ(1 − cos α)
sin α

⎞
⎠ + α̇

⎛
⎝ sin φ

cos φ

0

⎞
⎠ ,

and �φ = (
γ u

φ ,γ v
φ ,γ w

φ

)
, with

γ u
φ = −(�u cos2 α cos2 φ + �v sin2 φ + �w cos2 φ sin2 α

−V cos α sin α cos2 φ)uφ

+ (�u cos2 α cos φ sin φ − �v cos φ sin φ

+�w cos φ sin φ sin2 α)vφ

+ [(�u − �w) cos α sin α cos φ − V sin2 α cos φ]wφ,

γ v
φ = cos φ sin φ(�u cos2 α−�v+�w sin2 α−V cos α sin α)uφ

− (�u cos2 α sin2 φ + �v cos2 φ + �w sin2 α sin2 φ

−V cos α sin α sin2 φV )vφ

− sin φ(�u cos α sin α − �w cos α sin α − V sin2 α)wφ,

γ w
φ = cos φ(�u cos α sin α − �w cos α sin α + V cos2 α)uφ

− sin φ(�u cos α sin α − �w cos α sin α + V cos2 α)vφ

− (�u sin2 α + �w cos2 α + V cos α sin α)wφ.

Now we introduce an approximation to simplify this Bloch
equation. When |δs | � τ−1, the two-pulse interference time
scale becomes much smaller than other time scales in Eq. (15).
In this case, it is appropriate to replace periodic functions in
φ with their time averages (sinφ = cosφ = 0, and sin2φ =
cos2φ = 1/2) in Eq. (15), while assuming all other terms to
be approximately constant during the average. Then, the time-
averaged Bloch equation in the φ coordinate reads as

ρ̇φ = �〈φ〉 × ρφ − �〈φ〉 + C〈φ〉, (16)

where

�〈φ〉 = ( − εs(1 + cos α),0,|�h| − δs),

�〈φ〉 = (
uφγ u

〈φ〉,vφγ v
〈φ〉,wφγ w

〈φ〉
)
,

C〈φ〉 = (0,0, − V sin α − �w cos α)

with γ u
〈φ〉 = γ v

〈φ〉 = (�u cos2 α + �v + �w sin2 α − V cos α sin
α)/2 and γ w

〈φ〉 = �u sin2 α + �w cos2 α + V cos α sin α.
Similar to a singly driven system with a torque vec-

tor � = (2ε,0,�AL) [10,11], the coherent interaction (cross
product) in Eq. (16) is determined by a torque vector �〈φ〉
with its uφ component proportional to the signal field Rabi
frequency εs , and its vφ component identically zero. The
interesting difference from the Bloch equation of a singly
driven system, however, comes from the wφ component of
�〈φ〉. In place of the atom-field detuning �AL in the torque
vector � of a singly driven system [10,11], there appears
an effective detuning �+s = |�h| − δs = (ωh + |�h|) − ωs

that represents the detuning between the signal-pulse carrier
frequency ωs and the right Mollow sideband with frequency
ωh + |�h| [see Fig. 7(a)]. Due to the dependence of the Mollow
splitting |�h| on the holding-pulse field strength, an effective
chirping of the detuning �+s occurs during the passage of
the pulses. This leads to the large inversion modulation of the
quantum-dot population when the signal-pulse frequency is
near the right Mollow sideband, as demonstrated below.

As shown in Fig. 6(a), after the passage of a single redshifted
holding pulse (�Ah > 0), the Bloch vector of the quantum
dot evolves to state ρ(t3) with positive population inversion.
This is the result of an enhanced radiative relaxation of the
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FIG. 6. (Color online) Population inversion modulation when
�Ah > 0. The pulse duration τ = 5 ps, γhigh = 2.5 THz, γlow =
5 GHz, γp = 0, �Ah = 11 THz, �hE = 4 THz, δs = 23 THz, and
εmax
h = 20 THz. (a) When εmax

s = 0, positive inversion is obtained
through dynamic inversion in the (u,v,w) frame. (b) When εmax

s =
εmax
h /3, negative inversion is obtained via dressed-state chirping in

the (uφ,vφ,wφ) frame.

Bloch vector ρ toward the instantaneous steady state [large
(green) dot SS] at the peak of the pulse (t1) followed by
adiabatic following by the Bloch vector ρ of the torque
vector � to the inverted state [10,11]. This positive final
inversion is dramatically changed when a weaker secondary
signal pulse passes the quantum dot at the same time as the
holding pulse, especially when the signal-pulse frequency is
near the right Mollow sideband generated by the holding
pulse [Fig. 4(a)]. In this case, a negative final inversion is
reached instead. The negation of the final inversion by the
signal pulse is the result of the Bloch dynamics shown in
Fig. 6(b), described by the time-averaged Bloch equation (16)
in the (u〈φ〉,v〈φ〉,w〈φ〉) frame. Near the peak of the pulse, the
field-enhanced radiative relaxation rates cause rapid attraction
to the steady state of Eq. (16) [large (green) dot SS in Fig. 6(b)]
and bring the Bloch vector close to SS at t1. At this time,

5 10 15 20
t ps

10

5

5

10

15

h s THz

b

a

FIG. 7. (Color online) Chirping of the detuning between the
signal pulse and the singly dressed levels transition that gives rise
to the right Mollow sideband. The pulse duration τ = 5 ps, γhigh =
2.5 THz, γlow = 5 GHz, γp = 0, �Ah = 11 THz, �hE = 4 THz,
δs = 23 THz, and εmax

h = 20 THz. (a) Dressed-state levels and the
detuning δ+s between the signal pulse and the right Mollow sideband
of the holding pulse. (b) Effective chirping of δ+s over time.

the torque vector �〈φ〉(t1) also points to SS with its detuning
component �+s = |�h| − δs being positive at the peak of the
pulse [Fig. 7(b)]. As the pulse subsides, the relaxation rate
drops significantly and the system enters the coherent transient
time regime. The decrease in holding-pulse Rabi frequency
means the detuning �+s also decreases, corresponding to
an effective chirping of the signal with respect to the right
Mollow sideband. If δs satisfies �Ah = |�min

h | < δs < |�max
h |

[the region (ωh + |�min
h |,ωh + |�max

h |) indicated in Fig. 4(a)],
then the effective chirping moves the torque vector �〈φ〉
from pointing upward at pulse peak to pointing downward
at t3 [�+s < 0 at the end of the pulse, see Fig. 7(b)]. If,
furthermore, the signal pulse is strong enough to satisfy the
adiabatic condition (torque vector speed is much smaller than
the precession frequency of the Bloch vector around the torque
vector [10,11])

∣∣∣∣d�〈φ〉
dt

∣∣∣∣ � |�〈φ〉|, (17)
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then the Bloch vector will follow the chirping movement of the
torque vector and reach a state without inversion, even though
the holding pulse alone would produce inversion.

B. Signal-pulse negation of dynamic de-excitation

We now consider the large inversion modulation effect de-
picted in the left Mollow sideband region (ωh − |�max

h |,ωh −
|�min

h |) of Fig. 4(b). Here, the simultaneous presence of a weak
signal pulse modulates the final population inversion reached
after the passage of a blueshifted holding pulse (�Ah < 0)
from negative to positive. In this case, the signal pulse is
nearly resonant with the left Mollow sideband generated by
the blueshifted holding pulse. As in the previous section,
we explain this inversion modulation effect by transforming
the Bloch equation (9) into the φ-coordinate system through
the rotations defined in Eqs. (13) and (14). However, a subtle
difference from the previous section arises in the definition
of angle α. If we continue defining cos α = �Ah/|�h| and
sin α = 2εh/|�h| as we did for a redshifted holding pulse,
then the final population inversion wφ = wα = −u sin α +
w cos α → −w instead of w after the passage of the pulses.
This can be easily seen from sin α → 0 and cos α → −1
as εs → 0, which implies α → π because the torque vector
�h points downward for �Ah < 0. In order to ensure that
wφ → w as it must after the pulse subsides, we must choose
cos α = −�Ah/|�h| = |�Ah|/|�h| and sin α = −2εh/|�h| in
the rotation transformation (13). The subsequent transforma-
tion to the φ coordinate, however, is identical to the �Ah > 0
case, and is depicted in Fig. 8(b).

After the coordinate rotations of Eqs. (13) and (14),
followed by the time average of the φ oscillatory terms
over the time scale δ−1

s , the transformed Bloch equation for
blueshifted holding pulse and a signal pulse has the same
form as Eq. (16), except for the expression of �〈φ〉. This now
becomes �〈φ〉 = −|�h| − δs = (ωh − |�h|) − ωs = �−s and
represents the detuning of the signal-pulse carrier frequency
from the left Mollow sideband generated by the holding pulse
[Fig. 10(a)]. As we show below, the chirping of �−s gives
rise to the large inversion modulation of the quantum-dot
population when the signal-pulse frequency is near the left
Mollow sideband generated by a blueshifted holding pulse.

It can be seen from Fig. 9(a) that, after the passage of a single
blueshifted holding pulse (�Ah < 0), the Bloch vector ρ(t3) of
the quantum dot evolves to the ground state. This is enabled,
as before, by steady-state attraction and adiabatic following
as shown in Fig. 9(a) [10,11]. This de-excitation is negated
when a secondary signal pulse passes the quantum dot at the
same time as the holding pulse, provided that the signal pulse
frequency is near the left Mollow sideband generated by the
holding pulse [Fig. 4(b)]. The positive final inversion caused
by the signal pulse is the result of the Bloch dynamics shown
in Fig. 9(b) in the (u〈φ〉,v〈φ〉,w〈φ〉) frame. Near the peak of
the pulse, the field-enhanced radiative relaxation causes rapid
attraction to the steady state of Eq. (16) [large (green) dot SS

in Fig. 9(b)] and brings the Bloch vector close to SS at t1. At
this time, the torque vector �〈φ〉(t1) also points approximately
to SS with negative detuning component �−s [Fig. 10(b)].
As the pulse subsides, the relaxation rate drops significantly
and the system enters the coherent transient time regime.

(a)

uα ucos wsinα

vvα

wα usin wcosα

h s

α

α
α

φ

(b)

uα

vα

wφ wα

vφ uαsin vαcosφ

uφ uαcos vαsinφ
h s φ

FIG. 8. (Color online) Bloch coordinate transformations for
�Ah < 0 case. The original (u,v,w) coordinate system in the bare
atomic basis is (a) first rotated by angle α about the v axis to
antiparallel alignment with �h (dressed-state basis of the holding
pulse), and then (b) rotated by angle φ about the wα axis to catch up
with the rotation of the signal-pulse torque vector �s .

The decrease in holding-pulse Rabi frequency means that the
detuning �−s increases, corresponding to an effective chirping
of the left Mollow sideband. If δs satisfies �Ah = −|�max

h | <

δs < −|�min
h | [see Fig. 4(b)], then the effective chirping moves

the torque vector �〈φ〉 from pointing downward at pulse peak
to pointing upward at t3 [�−s > 0 at the end of the pulse [see
Fig. 10(b)]. If the adiabatic following condition of the signal
pulse [Eq. (17)] is satisfied, then the Bloch vector will follow
the chirping movement of the torque vector and reach a final
inverted state.
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FIG. 9. (Color online) Population inversion modulation when
�Ah < 0. The pulse duration τ = 5 ps, γhigh = 2.5 THz, γlow =
5 GHz, γp = 0, �Ah = −11 THz, �hE = 15 THz, δs = −13 THz,
and εmax

h = 6 THz. (a) When εmax
s = 0, negative inversion is obtained

through dynamic inversion in the (u,v,w) frame. (b) When εmax
s =

1.25 THz, positive inversion is obtained via dressed-state chirping in
the (uφ,vφ,wφ) frame.

C. The time-average approximation of the Bloch equation

Our explanation of the bichromatic inversion modulation
effect in Secs. III A and III B is based on the time-average
approximation used to simplify the Bloch equation (15) into
the intuitive form (16). In Figs. 11 and 12, we verify the
validity of this time-average approximation by comparing the
numerical solutions of the Bloch equation (15) (solid lines) and
the approximate Bloch equation (16) (dashed lines) for both
redshifted (Fig. 11) and blueshifted (Fig. 12) holding pulses.

Clearly, Eq. (16) is a good approximation for describing
the final population inversion wφ reached after passage of
the pulses. Although the time-average operation reduces the
oscillation amplitude of uφ after the passage of a redshifted
pulse (Fig. 11), it provides a reliable picture of dressed-state

5 10 15 20
t ps

3

2

1

1

2

h s THz

b

a

FIG. 10. (Color online) Chirping of the detuning between the
signal pulse and the singly dressed levels transition that gives rise
to the right Mollow sideband. The pulse duration τ = 5 ps, γhigh =
2.5 THz, γlow = 5 GHz, γp = 0, �Ah = −11 THz, �hE = 15 THz,
δs = −13 THz, and εmax

h = 6 THz. (a) Dressed-state levels and the
detuning δ−s between the signal pulse and the left Mollow sideband
of the holding pulse. (b) Effective chirping of δ−s over time.

chirping Bloch dynamics, and especially the temporal evolu-
tion of wφ during passage of the driving pulses.

IV. APPLICATION OF INVERSION MODULATION TO
OPTICAL LOGIC

In this section, we demonstrate the use of bichromatic
quantum-dot inversion modulation for ultrafast all-optical
logic operations, such as AND, OR, and NOT operations. The
proposed devices can be realized by embedding a collection
of independent quantum dots inside a 20-unit-cell segment
of a bimodal 2D-3D PBG waveguide with one cutoff mode
[25,26,29]. Ultrafast, intense, optical pulses with two different
carrier frequencies pass through the waveguide to interact with
the quantum dots. The dot transition frequencies and pulse
carrier frequencies are chosen to be close above the LDOS
discontinuity introduced by the cutoff frequency. The strong
coupling between the quantum dots and the two simultaneous
channels of optical pulses leads to quantum-dot population
dynamics as demonstrated in the previous sections. The
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FIG. 11. (Color online) Comparison of the φ-coordinate atomic
variable evolutions according to the time-averaged Bloch equa-
tion (16) (dashed curves) and the unaveraged Bloch equation (15)
for (a) uφ and (b) wφ . The pulse duration τ = 5 ps, γhigh = 2.5 THz,
γlow = 5 GHz, γp = 0, �Ah = 11 THz, �hE = 4 THz, δs = 23 THz,
εmax
h = 20 THz, and εmax

s = εmax
h /3.

sensitive dependence of the final population inversion on the
relative strength of the two channels of input optical pulses and
their detunings from the quantum-dot transition frequencies
can be exploited for all-optical logic. The sign of the final
population inversion determines the subsequent amplification
or attenuation of a probe pulse. Consequently, the logically
determined quantum-dot final state can be translated into
all-optical logic relations between the output probe signal and
the input signals.

A. All-optical NOT gate

In a logic NOT operation, the output is the opposite of
the input. A NOT gate can have only one input and one
output. To implement an all-optical NOT operation, consider
the spectrum configuration shown in Fig. 13(a). A channel
of strong optical holding pulses with carrier frequency ωh

and �Ah > 0 is modulated by weaker signal pulses with
carrier frequency ωs that is nearly resonant with the right
Mollow sideband (�Ah = |�min

h | < δs < |�max
h |). The channel

of optical information at carrier frequency ωs passes through
the quantum dot at the same time as the holding pulses at
carrier frequency ωh. As shown in Fig. 13(b), when the signal
is not present (input 0), dynamic inversion results in a final
inverted state (excited), whereas when the signal is present
(input 1), the final population becomes negative (de-excited)

(a)

5 10 15 20
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0.5

0.5

uφ

(b)
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1.0

0.5

0.5

wφ

FIG. 12. (Color online) Comparison of the φ-coordinate atomic
variable evolutions according to the time-averaged Bloch equa-
tion (16) (dashed curves) and the unaveraged Bloch equation (15)
for (a) uφ and (b) wφ . The pulse duration τ = 5 ps, γhigh = 2.5 THz,
γlow = 5 GHz, γp = 0, �Ah = −11 THz, �hE = 15 THz, δs = −
13 THz, εmax

h = 6 THz, and εmax
s = 1.25 THz.

as demonstrated in Sec. III A. The excited quantum dots will
allow the passage of the subsequent probe pulse (defined as
output 1) near the dot transition frequency ωA, whereas the
de-excited quantum dots will absorb and forbid the passage of
the probe pulse (defined as output 0). As a result, an optical
input of 0 in frequency channel ωs leads to an optical output
of 1 in frequency channel ωA, and vice versa. This fulfills the
all-optical logic NOT operation.

B. All-optical AND and OR gates

In a logic AND operation, the single output is positive only
if both of the two inputs are positive, whereas a logic OR

operation results in the single output being positive if either of
the two inputs is positive. These two logic operations can be
realized with a similar construction to that shown in Fig. 13(a).
The spectral configuration of both logic devices is shown in
Fig. 14. Two channels of optical information at frequency ωs

pass through the Q dot at the same time as a stronger holding
pulse at ωh with �Ah < 0 and −|�max

h | < δs < −|�min
h | =

�Ah. Depending on the relative strengths of the holding and
signal pulses, the proposed device can utilize the positive
inversion modulation (discussed in Sec. III B) to perform either
logic AND or OR operations. The modulation response curve
of the final QD inversion with respect to εs depends on the
strength of εh [Figs. 15(b) and 16(b)]. For a relatively large εh,
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FIG. 13. (Color online) Logic NOT operation via dressed chirping-
induced population inversion modulation when �Ah > 0. The
pulse duration τ = 5 ps, γhigh = 2.5 THz, γlow = 5 GHz, γp = 0,
�Ah = 11 THz, �hE = 4 THz, δs = 23 THz, and εmax

h = 20 THz.
(a) Spectrum model of the device. (b) Logic operation. The (blue)
dashed line corresponds to εmax

s = 0 (input 0) while the (red) solid
line corresponds to εmax

s = εmax
h /3 (input 1).

the final inversion increases monotonically with εs [Fig. 15(b)],
while for a relatively small εh, the final inversion easily reaches
saturation with increasing εs [Fig. 16(b)]. The former case can
be utilized to perform logic AND operations in which only the
addition of two signal pulses [input (1,1)] is strong enough to
switch the population to positive inversion [Fig. 15(a)]. One

FIG. 14. (Color online) Spectral configuration of the logic AND

and OR devices.
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FIG. 15. (Color online) Logic AND gate via dressed chirping-
induced population inversion modulation when �Ah < 0. The pulse
duration τ = 5, γhigh = 2.5 THz, γlow = 5 GHz, γp = 0, �Ah =
−11 THz, �hE = 15 THz, δs = −13 THz, and εmax

h = 10 THz.
(a) Logic operation. The (blue) dashed curve corresponds to εmax

s = 0
[input (0,0)], the (red) dotted curve corresponds to εmax

s = 1.2 THz
[input (0,1) or (1,0)], and the (red) solid curve corresponds to
εmax
s = 2.4 THz [input(1,1)]. (b) Plot of final inversion as a function of

εs with φs = 0 [(blue) solid curve] and φs = π [(red) dashed curve].

the other hand, the latter case can be utilized to perform logic
OR operations in which the arrival of only one signal-pulse
[input (0,1) or (1,0)] or the simultaneous arrival of both signal
pulses [input (1,1)] can switch the population to approximately
the same amount of positive inversion [Fig. 16(a)].

C. Inhomogeneous broadening and phonon
dephasing: Toward practical devices

The studies presented in the previous sections focus on
the response of a single Q dot to the holding and signal
pulses. The generalization to a collection of independent Q

dots is obtained by taking an average over the individual
Q-dot responses. Figure 17 depicts the average inversion
modulation as a function of the signal to holding pulse detuning
δs . Compared with the corresponding single-dot response in
Fig. 4, the inhomogeneous broadening tends to smooth out
oscillations in the inversion curve and decrease the overall
switching contrast.

To demonstrate realistic logic device performance, Fig. 18
shows the logic AND and OR operations when the inhomoge-
neous broadening is 6 THz (about 0.5% for 1.5 μm transition
frequency) and Fig. 19 shows the corresponding performances
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One Signal Two Signals
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Final Inversion

FIG. 16. (Color online) Logic OR gate via dressed chirping-
induced population inversion modulation when �Ah < 0. The pulse
duration τ = 5 ps, γhigh = 2.5 THz, γlow = 5 GHz, γp = 0, �Ah =
−11 THz, �hE = 15 THz, δs = −13 THz, and εmax

h = 6 THz.
(a) Logic operation. The (blue) dashed curve corresponds to εmax

s =
0 [input (0,0)], the (red) dotted curve corresponds to εmax

s =
1.25 THz [input (0,1) or (1,0)], and the (red) solid curve corresponds
to εmax

s = 2.5 THz [input(1,1)]. (b) Plot of final inversion as a function
of εs with φs = 0 [(blue) solid curve] and φs = π [(red) dashed curve].

when the broadening is 12 THz (about 1% for 1.5 μm
transition frequency). Similarly, Fig. 20 shows the perfor-
mance of logic NOT operations for 6- and 12-THz inhomoge-
neous broadenings. A phonon dephasing rate of γp = 0.1 THz
is also included in these simulations. As seen from Figs. 19
and 20, even with significant(1%) inhomogeneous broadening
and phonon dephasing (γp = 0.1 THz), the AND, OR, and NOT

operations exhibit significant contrast for distinct output states
of a probe signal pulse.

V. DISCUSSION

By generalizing the singly driven Bloch equation inside
the structured vacuum of a photonic crystal [10,11] to a
multiply driven system, we have discovered a bichromatic
strong-coupling effect that enables multiwavelength channel
all-optical logic on a chip. This bichromatic QD inversion
modulation effect is a double-pulse extension of single-pulse
dynamic switching described earlier [10,11]. The addition of a
second frequency, weaker signal pulse to the previously single-
pulse-driven QD leads to a remarkable strong modulation and
logic-based control over the QD Bloch vector evolution path,

(a)

δs THz

1.0

0.5

0.5

1.0

Average Inversion

56 42 28 14 0 14 28 42 56 70

(b)

δs THz

1.0

0.5

0.5

1.0

Average Inversion

32 24 16 8 0 8 16 24 32 40

FIG. 17. (Color online) Effects of Gaussian inhomogeneous
broadening on the bichromatic inversion modulation effects. The
pulse duration τ = 5 ps, γhigh = 2.5 THz, γlow = 5 GHz, and γp = 0.
The (blue) solid curves correspond to φs = 0 and (red) dashed curves
correspond to φs = π . (a) Mean holding pulse detuning 〈�Ah〉 =
11 THz with FWHM = 12 THz (1% for 1.5 μm transition frequency),
�hE = 4 THz, εmax

h = 20 THz, and εmax
s = εmax

h /3. (b) 〈�Ah〉 =
−11 THz with FWHM = 6 THz (0.5% at 1.5 μm transition
frequency), �hE = 15 THz, εmax

h = 6 THz, and εmax
s = 1.25 THz.

enabling ultrafast control of QD excitations with femtojoule
optical pulses in a photonic crystal chip.

As shown previously [10,11], single-pulse dynamic switch-
ing occurs through (a) field-enhanced radiative relaxation,
which rapidly attracts the QD Bloch vector to parallel align-
ment with the pulse torque vector (steady-state attraction).
This is followed by (b) coherent evolution when the pulse
subsides, leaving the QD decoupled from the high LDOS
of a waveguide cutoff mode (slow radiative relaxation), so
that the Bloch vector adiabatically follows the pulse torque
vector. The physics brought about by the second, weaker
signal pulse occurs in the coherent evolution of step (b).
Instead of probing the fixed QD bare levels such as the holding
pulse, the signal pulse probes the time-varying dressed levels
created by the holding pulse. This introduces an effective
chirping between the signal field and the dressed transition
resonance. For the case of a redshifted (�Ah > 0) holding
pulse alone, the Bloch vector will always coherently follow
the upward-pointing torque vector to the excited state. The
signal pulse, however, resonantly probes the chirped dressed
levels at the right Mollow sideband. When viewed from the
signal pulse’s own rotating frame (within the dressed-state
basis created by the holding pulse), the overall torque vector
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FIG. 18. (Color online) Logic operations with 6 THz (0.5% at
1.5 μm transition frequency) of inhomogeneous broadening in Q-dot
transition frequency. The pulse duration τ = 5 ps, γhigh = 2.5 THz,
γlow = 5 GHz, γp = 0, and δs = −12.5 THz. One signal has peak
Rabi frequency 1.2 THz. The (blue) dashed curves correspond to
signal channel input (0,0), the (red) dotted curves correspond to input
(1,0) or (0,1), and the (red) solid curves correspond to input (1,1).
(a) Logic AND operation. Average �Ah = −9 THz, εmax

h = 10 THz.
(b) Logic OR operation. Average �Ah = −7 THz, εmax

h = 6 THz.

rotates from upward (pulse peak) to downward (pulse tail) as
the detuning ωh + |�h| − ωs between the signal pulse and the
right Mollow sideband of the holding pulse passes through
zero. This chirping-induced torque vector flipping negates the
population inversion that would arise by the holding pulse
alone. Similarly, in the case of a signal pulse probing the
chirped dressed levels of the left Mollow sideband created by
a blueshifted holding pulse (�Ah < 0), the same mechanism
leads to reversal of the QD final population from negative to
positive.

A distinguishing characteristic of our dynamic switching
and bichromatic (double-pulse) modulation of QD population
inversion compared to previously studied coherent chirping-
induced adiabatic inversion [30–38] is the field-enhanced
radiative relaxation (step a) due to the LDOS discontinuity.
This rapid steady-state attraction of the Bloch vector to the
state parallel with the torque vector wipes out all memory
of the initial state of the QD. Then, the coherent evolution
step (b) likewise results in the same final state, independent
of the system initial condition. Previously studied coherent
adiabatic inversions [30–38] are lacking in this rapid, au-
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0.5
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(b)
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0.5

0.5

1.0
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FIG. 19. (Color online) Logic operations with 12 THz (1% at
1.5 μm transition frequency) of inhomogeneous broadening in Q-dot
transition frequency. The pulse duration τ = 5 ps, average �Ah = −6
THz, δs = −12.5 THz, γhigh = 2.5 THz, γlow = 5 GHz, and γp =
0.1 THz. One signal has peak Rabi frequency 2.26 THz. The (blue)
dashed curves correspond to signal channel input (0,0), the (red)
dotted curves correspond to input (1,0) or (0,1), and the (red) solid
curves correspond to input (1,1). (a) Logic AND operation, εmax

h =
12.5 THz. (b) Logic OR operation, εmax

h = 8.2 THz.

tomatic prealignment of the Bloch vector. As a result, they
require preparation of the QD in a particular state in advance
to guarantee evolution to a desired final state. This initial-state
dependence is due to the highly (Rabi) oscillatory nature of the
coherent evolution when the Bloch vector is not well aligned
with the torque vector. The independence of final state with
respect to initial states is particularly important for applications
in all-optical computing. It ensures that past logic operation
history will not influence the desired outcome of the current
operation.

We have demonstrated the flexibility of bichromatic QD
population control for ultrafast all-optical logic gates, in-
cluding AND, OR, and NOT gates. Multiwavelength channel
optical logic devices of this type can be cascaded using the
recently demonstrated [39] all-optical, on-chip, wavelength
conversion architectures. In this case, a large number of optical
logic devices can be integrated on a single photonic crystal
chip for optical information processing. Input logic states
are encoded into the signal-pulse stream passing through a
bimodal photonic crystal waveguide simultaneously with a
strong holding-pulse stream. The signal and holding pulses
perform logical operations on the two-level QD medium
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FIG. 20. (Color online) Logic NOT operations with (a) 6 THz and
(b) 12 THz of inhomogeneous broadening (0.5% and 1% at 1.5 μm
transition frequency, respectively) in Q-dot transition frequency. The
pulse duration τ = 5 ps, average �Ah = 11 THz, δs = 23 THz,
γhigh = 2.5 THz, γlow = 5 GHz, γp = 0.1 THz, εmax

h = 20 THz, and
εmax
s = εmax

h /3. The (blue) dashed curves correspond to signal channel
input 0, and the (red) solid curves correspond to input 1.

embedded inside the waveguide on a time scale defined by
radiative relaxation in a high LDOS. The logic operation
results are stored in the QDs as excited or ground states on
a time scale defined by radiative relaxation in a low LDOS.
They are then read out by probe pulses as optical logic
outputs. Although inhomogeneous broadening and phonon
dephasing tend to reduce the population contrast between
distinct logic state outputs, our numerical simulations show
that it is possible to reach acceptable population contrast within
several picoseconds under 1% inhomogeneous broadening
and 0.1-THz nonradiative dephasing rate. For successful
fabrication of the photonic crystal waveguide with the desired
sharp jump in LDOS, it has been shown in [26] that high-
precision resolution down to several nanometers scale may
be required for the active waveguide region where the QDs
are embedded, while the background PBG cladding structures
can accommodate substantial disorder without compromising
device functionality.

Our theory assumes that each QD responds to radiation
fields individually, independent of any other QDs. However,
it has been shown in all-optical switching device simulation
based on steady-state QD switching in PC waveguides that
multiple QDs embedded in the waveguide could respond

to external fields collectively if illuminated uniformly [29].
The collective responses of NQD quantum dots can enhance
the polarization nonlinearity and broaden the fluorescence
spectrum by a factor of NQD compared to the independent
QD model [7,29]. If applied appropriately to the all-optical
logic proposed herein, this collective effect could significantly
reduce the pulse-power and field-strength requirements, and
dramatically improve the response speed of the logic opera-
tions.

Our model does not consider the role of light emitted by
QDs into the EM modes of the photonic crystal and how
this light reacts back on the QDs together with the input
laser pulses. The description of coherent feedback requires
self-consistent modeling and simulation of Maxwell equations
together with Bloch equations. It is shown elsewhere [40]
that coherent feedback and stimulated emission in the high
LDOS region effectively enhances the ratio of emission rates
between the QD Mollow components in the high and low
LDOS regions. Accordingly, we expect the logic operation
contrasts to be further improved if we take into account
these feedback effects. On the other hand, coherent feedback
from QD stimulated emissions in the high LDOS region
could generate memory effects that cause oscillation in QD
populations and dipoles even after passage of the input pulses.
This is not captured in our present simulation. In our model, no
residual population oscillations are present and the QD final
state after pulse passage is independent of its initial state. That
is due to the rapid rate of radiative relaxation in the high LDOS
region without coherent feedback. The absence of feedback is
consistent with our use of a steplike LDOS profile (infinite
width of high LDOS region) instead of typical LDOS spikes
that arise from cavity modes.

Memory effects due to coherent feedback may be undesir-
able in optical logic applications involving a long sequence
of optical pulses separated by short time intervals. A natural
mechanism to erase the memory effects is the coupling of
the quantum dots to damped phonons, causing both dephasing
and nonradiative decay [40,41]. The deterioration of the QD
inversion caused by this interaction could be slowed down
if the dephasing and Frank-Condon effects can diminish the
QD dipole that drives the population decay [40]. This balance
between coherent feedback and damping caused by phonons
may be important in achieving high-contrast optical logical
operations without unwanted long-time memory effects. Fur-
ther investigation of these issues is important in establishing
practical applications of our results to on-chip all-optical
information processing.
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APPENDIX A: DERIVATION OF THE MASTER EQUATION
FOR BICHROMATIC CONTROL OF QUANTUM DOT

In this Appendix, we derive the master equation for the
reduced density operator of a quantum two-level system driven
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simultaneously by a strong holding pulse and a weak signal
pulse.

1. Hamiltonian in the dressed-state basis

The basis transformation (4) defines a time-dependent
unitary operator B that transforms the wave function |ψ〉 and
a general operator O in the bare atomic basis into the dressed
atomic basis as |ψ̃〉 = B|ψ〉 and Õ = BOB†. After this basis
transformation, the Hamiltonian equation (2) becomes [42,43]

H̃ = BHB† − ih̄BḂ† = H̃0 + H̃i, (A1)

where H̃0 = h̄
(t)R̃3 + ∑
λ h̄ωλa

†
λaλ and H̃i = ∑

λ{ih̄gλa
†
λ

[−c(t)s(t)R̃3 + c2(t)R̃12 − s2(t)R̃21]+H.c.} − ih̄BḂ†. Then,
by further transforming to the interaction picture via the unitary
operator U ≡ eiH̃0(t−t0)/h̄, the Hamiltonian becomes

H̃I = UH̃iU
† = H̃ I

SR(t) − ih̄UBḂ†U †. (A2)

2. Derivation of the master equation

The density operator χ̃I of the whole system and reservoir
obeys the Schrödinger equation

˙̃χI (t) = 1

ih̄

[
H̃I ,χ̃I (t)

] = 1

ih̄

[
H̃ I

SR,χ̃I (t)
] − [UBḂ†U †,χ̃I (t)].

(A3)

By substituting the formal solution of Eq. (A3) χ̃I (t) =
χ̃I (0) + (1/ih̄)

∫ t

0 dt ′[H̃I (t ′),χ̃I (t ′)] back into the first term on
the right-hand side of Eq. (A3) gives

˙̃χI (t) = 1

ih̄

[
H̃ I

SR,χ̃I (0)
] − [UBḂ†U †,χ̃I (t)]

− 1

h̄2

∫ t

0
dt ′

[
H̃ I

SR(t),[H̃I (t ′),χ̃I (t ′)]
]
. (A4)

We assume that the interaction between the atomic system and
the reservoir is turned on at t = 0 with no correlation between
the two at that moment, so that χ̃I (0) = �̃I (0)R0. Here, �̃I

is the reduced density operator of the atomic system under
dressed-state basis and in the interaction picture, while R0 is
the density operator of the reservoir at t = 0. We also assume
the reservoir is in thermal equilibrium so that R0 is diagonal.
Then, we have

〈aλ〉R = 〈a†
λ〉R = 0. (A5)

Under these assumptions, we can obtain the formal equation
of motion of the reduced density operator by taking the trace
over the reservoir degree of freedom in Eq. (A4):

˙̃�I (t) = − 1

h̄2

∫ t

0
dt ′TrR

{[
H̃ I

SR(t),
[
H̃ I

SR(t ′),χ̃I (t ′)
]]}

+ i

h̄

∫ t

0
dt ′TrR

{[
H̃ I

SR(t),[UBḂ†U †(t ′),χ̃I (t ′)]
]}

− TrR[UBḂ†U †(t),χ̃I (t)], (A6)

where, because of Eq. (A5), the following relation is used:

TrR
{
H̃ I

SR(t)R0
} = 0. (A7)

The standard Born approximation assumes weak coupling
between the atomic system and the reservoir during the time
evolution so that χ̃I (t) = �̃I (t)R0 + O(H̃ I

SR). Keeping only up
to the second order in H̃ I

SR in Eq. (A6), the radiative part of
the master equation now becomes

˙̃�I (t) = [ ˙̃�I ]1 + [ ˙̃�I ]2 − TrR[UBḂ†U †(t),χ̃I (t)] (A8)

with the two integral terms

[ ˙̃�I ]1 = − 1

h̄2

∫ t

0
dt ′TrR

{[
H̃ I

SR(t),
[
H̃ I

SR(t ′),�̃I (t ′)R0
]]}

,

(A9a)

[ ˙̃�I ]2 = i

h̄

∫ t

0
dt ′TrR

{[
H̃ I

SR(t),
[
UBḂ†U †(t ′),�̃I (t ′)R0

+O
(
H̃ I

SR

)]]}
. (A9b)

As demonstrated earlier [11], in the strong field limit, the
order of magnitude of the rate of variation associated with
Eq. (A9b) is O(τcθ̇γ−). Here, τc is the reservoir correlation
time. θ̇ represents the angular speed of the total torque vector
� = �h + �s , with angular speed of �h on the order of τ−1 (τ
is the pulse duration) and angular speed of �s on the order of
max(τ−1,δs). If δs � τ−1 (small frequency detuning between
the signal pulse and the holding pulse compared with the
spectral width of the pulses), then θ̇ ≈ τ−1, so that for the same
reason as shown in [11], the second integral can be ignored in
the master-equation derivation. On the other hand, if δs � τ−1

(large frequency detuning between signal and holding pulse),
then θ̇ > τ−1 because of the fast oscillating component at
frequency δs . However, the contribution of this oscillatory
component to θ̇ is averaged out over the pulse duration τ so that
only the nonoscillating component determines the magnitude
of [ ˙̃�I ]2, which makes this second integral term also ignorable
in the master equation. Consequently, the radiative part of
the master equation in the dressed-state basis and interaction
picture simplifies to

˙̃�I = [ ˙̃�I ]1 − TrR[UBḂ†U †(t),χ̃I (t)]. (A10)

The first integral Eq. (A9a) can be evaluated (see Appendix B)
to give

[ ˙̃�I ]1 = −γ0

2
c2s2(�̃I − R̃3�̃I R̃3) − γ+

2
c4(R̃22�̃I − R̃12�̃I R̃21)

− γ−
2

s4(R̃11�̃I − R̃21�̃I R̃12)

− cs

2
e−2i
t [s2γ0(R̃12�̃I − R̃3�̃I R̃12)

+ c2γ+(R̃12�̃I + R̃12�̃I R̃3)

+ s2γ−(�̃I R̃12+R̃3�̃I R̃12)+ c2γ0(�̃I R̃12+R̃12�̃I R̃3)]

− c2s2

2
e4i
t (γ− + γ+)R̃21�̃I R̃21 + H.c. (A11)

Here, γ− is the decay rate at the left Mollow
sideband γ− = 2π

∑
λ |gλ|2δ[ωλ − ωh + 2
(t)] ≈ 2π

∑
λ|gλ|2δ[ωλ − ωh + 2
(t) + ν] for ν ∈ [−νs2/2,νs2/2], while

γ0 and γ+ are the decay rates at the central and right Mollow
bands similarly defined in Appendix B. This corresponds to
applying a local Markov approximation around each of the
Mollow frequencies ωh and ωh ± 2
(t).
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Finally, by transferring the radiative part of the master
equation (A10) back into the Schrödinger picture and bare
atomic basis (see Ref. [11] for details), and combining it with
the nonradiative part of the master equation, we arrive at the
master equation (6) given in the main text.

APPENDIX B: DRESSED-ATOM CORRELATIONS IN THE
LOCAL MARKOV APPROXIMATION

In this Appendix, we evaluate the first integral of the master
equation (A9a). The standard Markov approximation assumes
that the future evolution of �̃I (t) does not depend on its past
values, so that �̃I (t ′) is replaced by �̃I (t) in Eq. (A9a). For
convenience, we write H̃ I

SR = ∑6
i=1 S̃i �̃i , where

S̃1 = S̃4 = R̃3, S̃2 = S̃5 = R̃12, S̃3 = S̃6 = R̃21,

�̃1 = �̃
†
4 = −ih̄

∑
λ

gλa
†
λc(t)s(t)ei�λt ,

(B1)
�̃2 = �̃

†
5 = ih̄

∑
λ

gλa
†
λc

2(t)ei[�λ−2
(t)]t ,

�̃3 = �̃
†
6 = −ih̄

∑
λ

gλa
†
λs

2(t)ei[�λ+2
(t)]t .

Now, by invoking the Born-Markov approximation, the first
integral (A9a) becomes

[ ˙̃�I ]1 = −
∑
i,j

1

h̄2

∫ t

0
dt ′{[S̃i S̃j �̃I (t)

− S̃j �̃I (t)S̃i]〈�̃i(t)�̃j (t ′)〉R
+ [�̃I (t)S̃j S̃i − S̃i �̃I (t)S̃j ]〈�̃j (t ′)�̃i(t)〉R}, (B2)

where 〈�̃i(t)�̃j (t ′)〉R = TrR[R0�̃i(t)�̃j (t ′)], �̃I (t) is the re-
duced density operator of the atom, and R0 is the reservoir
part of the density operator.

If we make the substitution t ′ = t − τ and assume the
electromagnetic reservoir to be unoccupied, then Eq. (B2) can
be simplified to

[ ˙̃�I ]1 = − 1

h̄2

∑
j=1,2,3

i=4,5,6

[S̃i S̃j �̃I (t) − S̃j �̃I (t)S̃i]

×
∫ t

0
dτ 〈�̃i(t)�̃j (t − τ )〉R

− 1

h̄2

∑
j=4,5,6

i=1,2,3

[�̃I (t)S̃j S̃i − S̃i �̃I (t)S̃j ]

×
∫ t

0
dτ 〈�̃j (t − τ )�̃i(t)〉R. (B3)

To facilitate the evaluation of the correlation integrals, we
spectrally expand the time-dependent factors f (t) ≡ c(t)s(t),
c2(t), and s2(t) in �̃i as follows:

f (t) = 1√
2π

∫ ∞

−∞
fνe

iνt dν ≈ 1√
2π

∫ νf

2

− νf

2

fνe
iνt dν. (B4)

We assume above that the main spectral widths of the functions
cs(t), c2(t), and s2(t) are νcs , νc2 , and νs2 , respectively.

Now we evaluate the integrals of each term contained in
Eq. (B3) for different values of i and j . For i = 4, j = 1,∫ t

0
dτ 〈�̃4(t)�̃1(t − τ )〉R

= h̄2c(t)s(t)
∑

λ

|gλ|2
∫ t

0
dτ c(t − τ )s(t − τ )e−i�λτ .

(B5)

The upper limit t of the τ integral in Eq. (B5) is on
the typical time scale for significant changes in the density
operator. In the Markov approximation, t is much larger than
the decay time scale of reservoir correlations that governs the
τ integral. As a result, we can approximate the τ integral by
extending its upper limit to ∞ [44]. This integral can then be
evaluated through the following relation [44,45]:

lim
t→∞

∫ t

0
dτ e−iωτ = πδ(ω) − iP

(
1

ω

)
, (B6)

where P indicates the Cauchy principal value. The first delta
function term is real, which leads to a decay term of the master
equation. The second principal value term is complex, which
gives rise to an oscillatory term in the master equation that acts
as shift in the atomic transition frequency [44]. This frequency
shift can always be accounted into the transition frequency,
and we can only focus on the decay dynamics. Consequently,
by discarding the principal value term and using (B4), we get∫ t

0
dτ 〈�̃4(t)�̃1(t − τ )〉R

= h̄2

2
c(t)s(t)

1√
2π

∫ νcs
2

− νcs
2

dν(cs)νe
iνt γωh−ν, (B7)

where γωh−ν = 2π
∑

λ |gλ|2δ(ωλ − [ωh − ν]) and (cs)ν is
defined in Eq. (B4). The spectral width νcs of cs is of order
max (τ−1,δs). When δs � τ−1, the spectral width νcs ∼ τ−1

is confined by the spectral width of the pulse. We also
assume that the photonic density of states is smooth in the
region [ωh − νcs/2,ωh + νcs/2] such that γωh−ν ≈ γωh

≡ γ0

for −νcs/2 � ν � νcs/2. On the other hand, if δs � τ−1, there
would be major spectral components (cs)ν at ν ≈ ±δs far away
from the central frequency ωh in the integral (B7). In this
relatively large frequency region [ωh − νcs/2,ωh + νcs/2], a
smooth decay rate γωh−ν is not satisfied. However, for these
high-frequency components, the corresponding fast oscillating
factor eiνt renders their average contribution to the system
evolution over a time scale of τ to be vanishingly small
regardless of the value of γωh−ν . In this case, we can also
replace γωh−ν with γ0 without causing any material difference.
This analysis implies that for fast oscillating dressed states (due
to large detuning between the holding and signal pulse), only
the nonoscillating components of the dressed-state coefficients
c and s are important in determining the radiative decay rates
of the dressed system. Then, by using the inverse of Eq. (B4)
in (B7), we arrive at∫ t

0
dτ 〈�̃4(t)�̃1(t − τ )〉R ≈ h̄2

2
c2(t)s2(t)γ0. (B8)

Effectively, we have made a “local Markov” approximation
around the central Mollow band located at ωh. As long as the
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central Mollow band is far enough from the band edge (such
that the edge ωE is outside the spectral width νcs around the
central Mollow band), or that the spectral components (cs)ν
that move into the band edge have enough detuning from the
central component at ωh, the approximation (B8) is reasonable.

For i = 5, j = 2,∫ t

0
dτ 〈�̃5(t)�̃2(t − τ )〉R

= h̄2c2(t)
∑

λ

|gλ|2,
∫ t

0
dτ c2(t − τ )e−i[�λ−2
(t)]t

× ei[�λ−2
(t−τ )](t−τ ). (B9)

Under Markov approximation, we replace 
(t − τ ) with

(t) in the τ integration. Then, by using Eq. (B4), we obtain
∫ t

0
dτ 〈�̃5(t)�̃2(t − τ )〉R ≈ h̄2c(t)2

∫ ν
c2
2

− ν
c2
2

dν c2
νe

iνt
∑

λ

|gλ|2

×
∫ t

0
dτ e−iντ−i[�λ−2
(t)]τ .

(B10)

Similar to the evaluation of Eq. (B5), by extending the
upper limit of the τ integral to infinity (because in the Markov
approximation, the contribution of the τ integral mainly comes
from the reservoir correlation decay time scale that is much
shorter than the density operator evolution time scale t in the
upper limit), and making use of Eq. (B6), we obtain∫ t

0
dτ 〈�̃5(t)�̃2(t − τ )〉R

≈ h̄2

2
c2(t)

∫ ν
c2
2

− ν
c2
2

dν c2
νe

iνt2π (B11)

×
∑

λ

|gλ|2δ[ωλ − ωh − 2
(t) + ν] ≈ h̄2

2
c4(t)γ+,

where γ+ = 2π
∑

λ |gλ|2δ(ωλ − ωh − 2
(t)) ≈ 2π
∑

λ |gλ

|2δ(ωλ − ωh − 2
(t) + ν) for ν ∈ [−νc2/2,νc2/2]. This
corresponds to a local Markov approximation around the right
Mollow sideband located at ωh + 2
(t).

Following the same steps for other combinations of i,j in
Eq. (B3), we obtain the first integral of the radiative master
equation given in Eq. (A11).
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